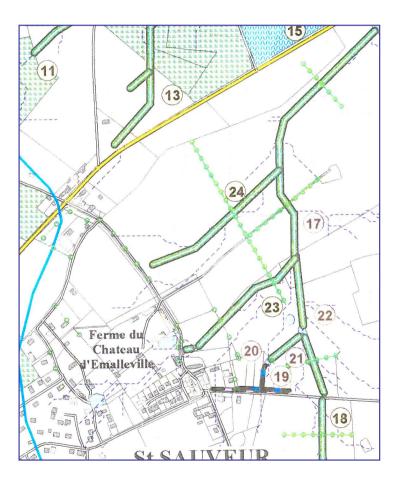
FORMATION TECHNIQUE:

JOURNEE du 3- 5- 2007

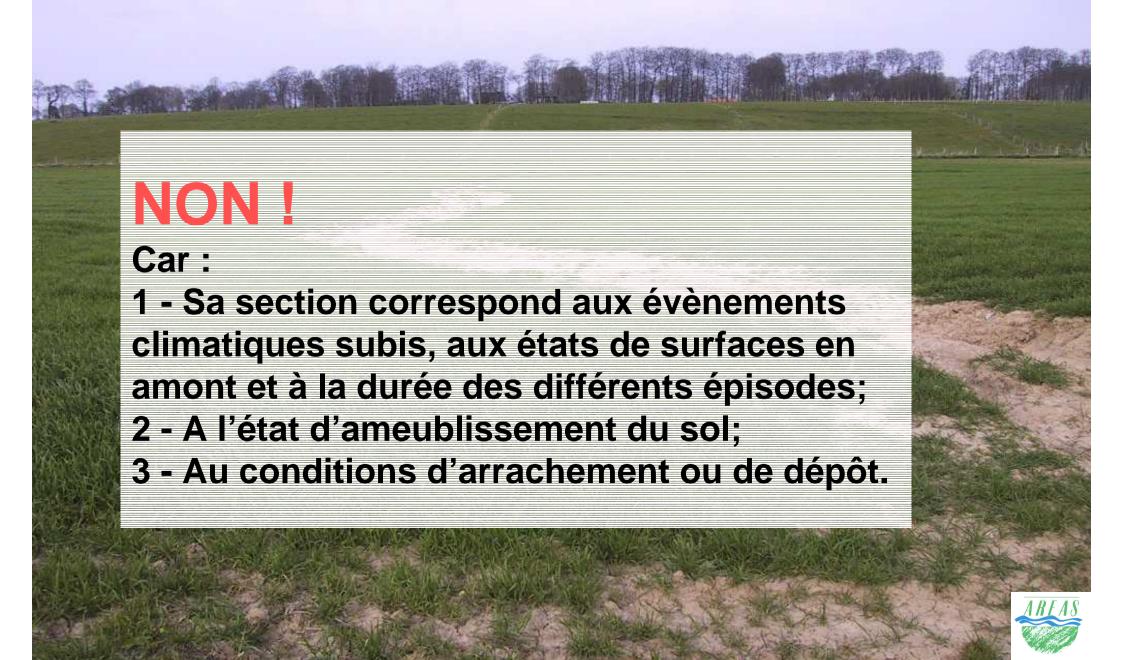
Seine-Maritime

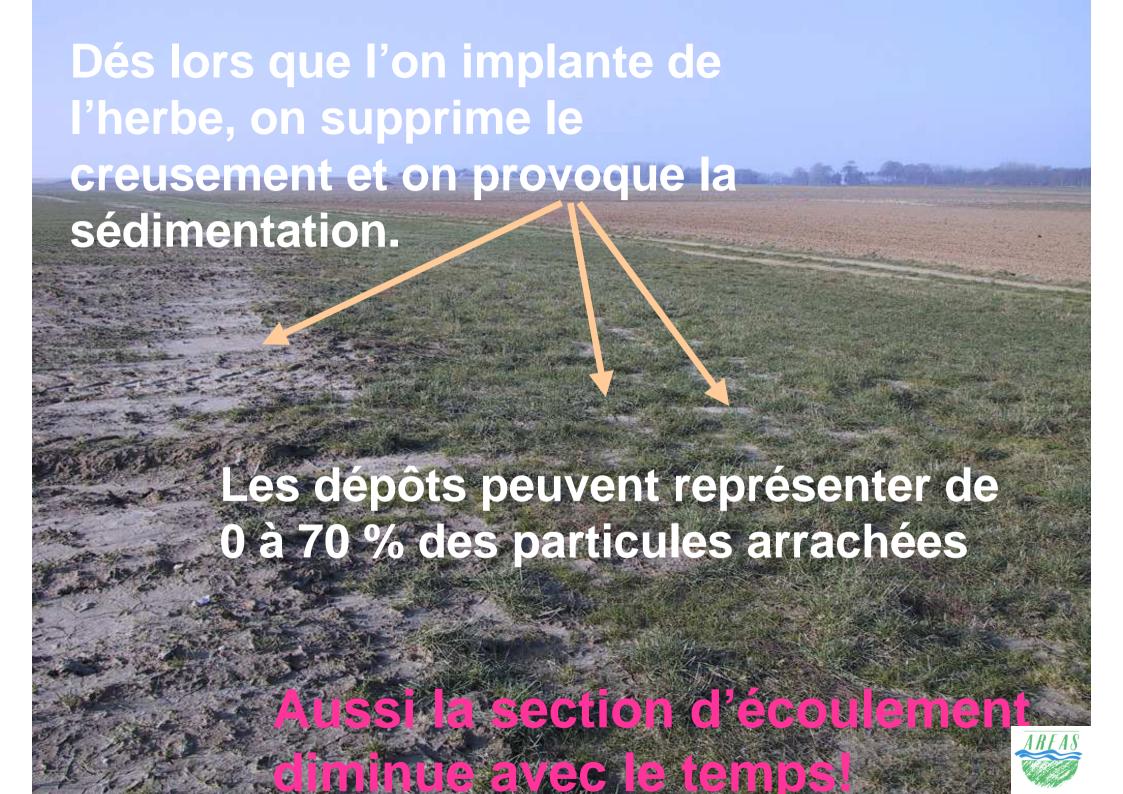

Le Département

FEDER

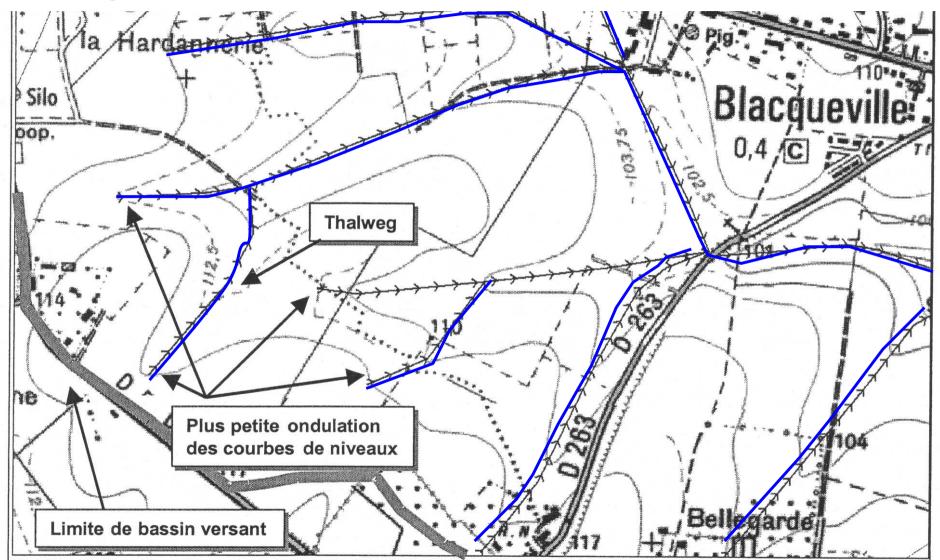
D'où vient cette question du dimensionnement des dispositifs enherbés de talweg?

2. des constats de terrain


Quelle largeur enherber ?


Longue pluie peu intense? Ou pluie exceptionnelle?

Est ce que enherber cette rigole suffit ?


ALORS:

- Soit le chemin d'eau enherbé n'est plus accessible (niveau trop élevé);
- Soit sa section est en sous capacité.

BILAN : un ravinement parallèle apparaît!

Peut on calculer la largeur à enherber à partir des cartes IGN au 1/25 000 ?

Austreberthe Methodo. pour le def. de 2002 SAFEGE Source figure : PPRI BV l'aléa ruissellement, dec

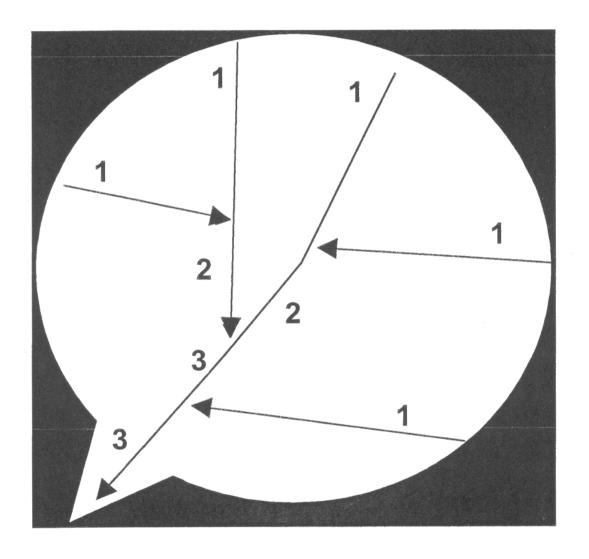


Figure 2: Exemple d'attribution des ordres aux thalwegs selon la méthode de Strahler

Peut on calculer la largeur à enherber à partir des cartes IGN au 1/25 000 ?

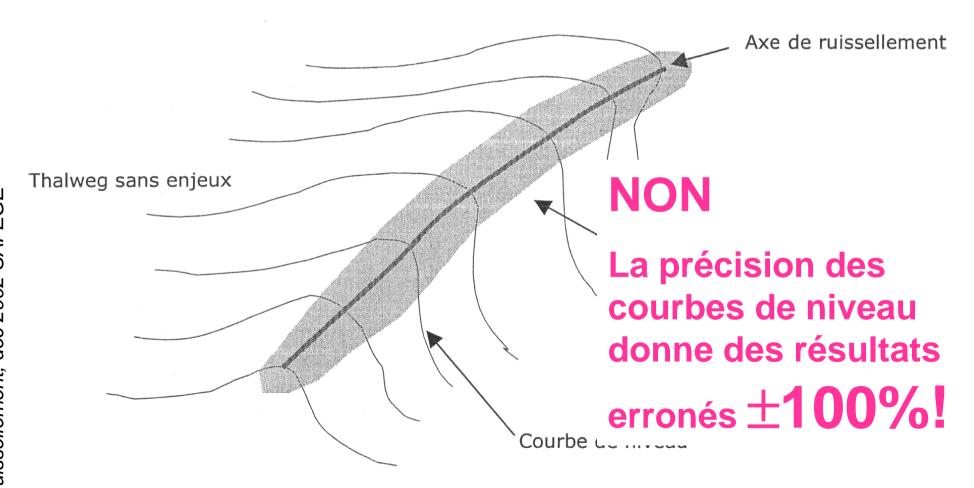
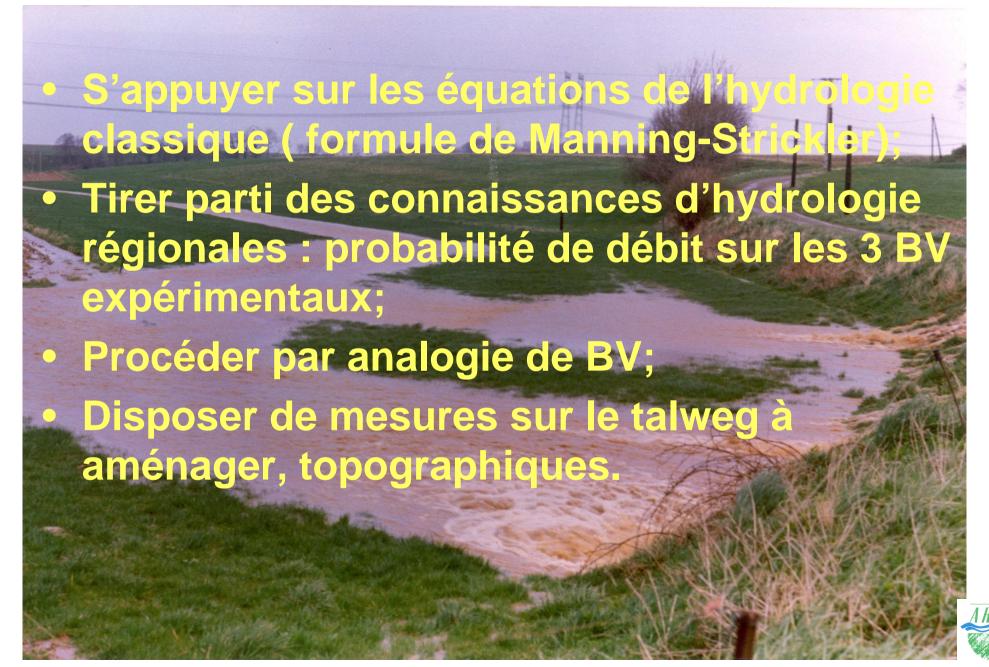


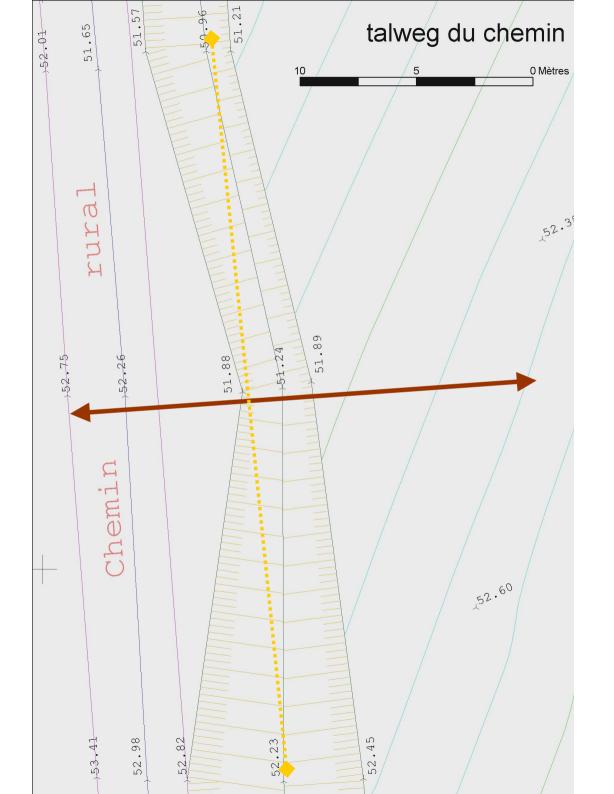
Figure 5 : Exemple de détermination de l'enveloppe d'aléa pour les thalwegs d'ordre 1 sans enjeu.

Après plusieurs tentatives :

Nous n'avons pas trouvé de règles simples !!!

Dommage.




Une méthode de dimensionnement des dispositifs enherbés des talwegs d'ordre 1 et 2 : OBJECTIFS DE CETTE METHODE

- Adaptée au débit (occupation du sol en amont, la pluie orageuse ou peu intense);
- Tenir compte de la sédimentation inéluctable;
- Avoir une méthode simple
- d'utilisation, précise,
- robuste, fiable, avec un minimum de rigueur, et aisée à présenter aux exploitants.

Une méthode de dimensionnement des dispositifs enherbés de talweg: Comment ?

Il est nécessaire de passer par un levé topo.

Méthodes analogique pour bassins versant homologues

$$Q_{10}^{connu} = A.S_1^{\alpha}$$

$$Q_{10}^{?} = A.S_{2}^{\alpha}$$

$$\Rightarrow Q_{10}^? = \left(\frac{S_2}{S_1}\right)^{\alpha} \times Q_{10}^{connu} \qquad \text{Avec } \alpha = 0.8$$

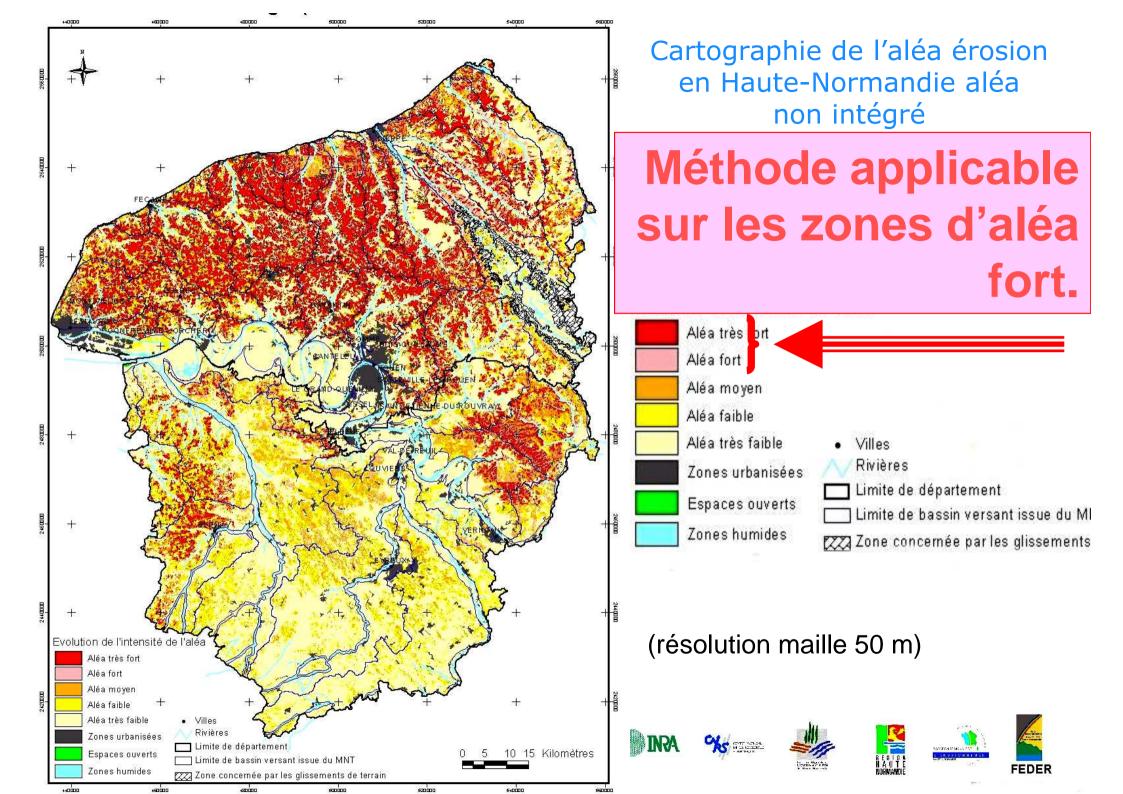
L'ajustement des mesures du bassin versant de Bourville permet d'estimer la crue maximum annuelle décennale

$$Q^{10ans} = 6.5 m^3 / s$$

$$Q_{Drosay}^{10ans} = \left(\frac{559}{1105}\right)^{0.8} \times 6.5 = 3.8 \, m^3 \, / \, s$$

1ère hypothèse: Choix d'un débit.

ESTIMATION DU DEBIT DECENNAL D'UN BV SUR LA BASE DE LA REFERENCE DE BOURVILLE


Référence:

Qp f10 = 1,00 m³/s/Km² 100% culture ou surfaces potentiellement ruissellantes

Exemple:

Surface du BV en Km ² =	1,00
% de surfaces ruissellantes =	67%
Q10 estimé en m ³ /s	0,670
Q100 estimé en m ³ /s	1,340

ESTIMATION DU DEBIT DECENNAL D'UN BV SUR LA BASE DE LA REFERENCE DE BOURVILLE

Référence:

 $Qp f10 = 1,00 \text{ m}^3/\text{s/Km}^2$

100% culture ou surfaces potentiellement ruissellantes

		Zama HADOIHESE
Surface du BV en Km ² =	1,00	Zomo nypotnese .
% de surfaces ruissellantes =	67%	Le débit dépend
Q10 estimé en m³/s	0.670	•
Q100 estimé en m³/s	1,340	de la taille du BV.

LALIVIFILIS						
Surface		Qp f10 m3/s				
du BV		% de TL				
Km ²	100%	80%	60%	40%	20%	
0,125	0,2	0,2	0,1	0,1	0,0	
0,25	0,3	0,3	0,2	0,1	0,1	
0,5	0,6	0,5	0,3	0,2	0,1	
1	1,0	0,8	0,6	0,4	0,2	
2	1,7	1,4	1,0	0,7	0,3	
4	3,0	2,4	1,8	1,2	0,6	
8	5,3	4,2	3,2	2,1	1,1	
16	9,2	7,4	5,5	3,7	1,8	
32	16,0	12,8	9,6	6,4	3,2	
64	27,9	22,3	16,7	11,1	5,6	
11	6,8	5,4	4,1	2,7	1,4	

EXEMPLES

→ On procède
 par analogie de
 BV, en utilisant
 la loi S^{0.8} :

2ème bypothàc

 $Qp2 = Qp1 * (S2/S1)^{0.8}$

Bourville

commentaires:

cette estimation ne doit être appliquée que pour des BV < à 1000 ha Cette estimation est valable pour des hauteurs d'herbe entre 10cm et 40cm.

Retardance = D

- 1 entrer les données dans les cellules à fond jaune pale
 - 1.1 d'abord le profil du fond de vallon avec 8 points maximum (mais cela marche aussi avec moins)
 - 1.2 ensuite, l'estimation du débit de pointe pour la fréquence 100 ans. sachant que c'est le double de F 10

En fait le calcul se fait automatiquement à partir de la donnée de la taille du BV amont et du taux de surface imperméabilisée.

- 1.3 indiquer la pente longitudinale
- 2 Les pavés en rose font les calcul automatiquement.

3 - il faudra faire converger le calcul du débit calculé, avec le débit à atteindre en faisant varier la hauteur de la cote fil d'eau

- 4 Pour affiner résultat on pourra aussi faire tendre le Ks choisi (cellule jaune) avec le Ks estimé (cellule rose)
- 5 on lit le résultat final dans les cellules vertes
- 6 Vérifier que Rh*V est > à 0,01 et que Ks est > à 5;

sinon on sort du domaine de validité du calcul.

Il faudrait alors reprendre le calcul pour une autre retardance ou changer la forme du chenal.

Calculs hydrauliques en régime permanent et uniforme (2)

La formule de Manning-Strickler est donnée par :

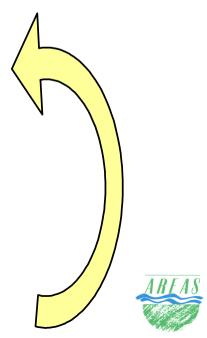
$$V = K_s R^{\frac{2}{3}} \sqrt{i} \qquad \text{et} \qquad Q = K_s S R^{\frac{2}{3}} \sqrt{i}$$

avec

: Coefficient de Strickler

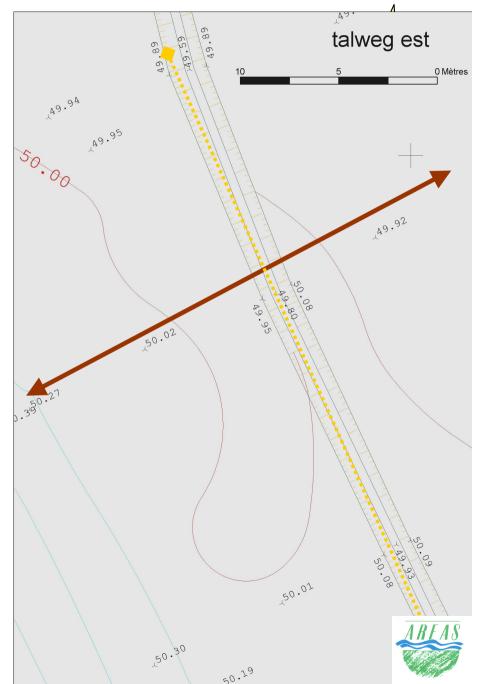
S: section du miroir en m² Surface mouillée R: rayon hydraulique en R: rayon hydraulique en R

i : pente en m/m


Concrètement comment fait-on?

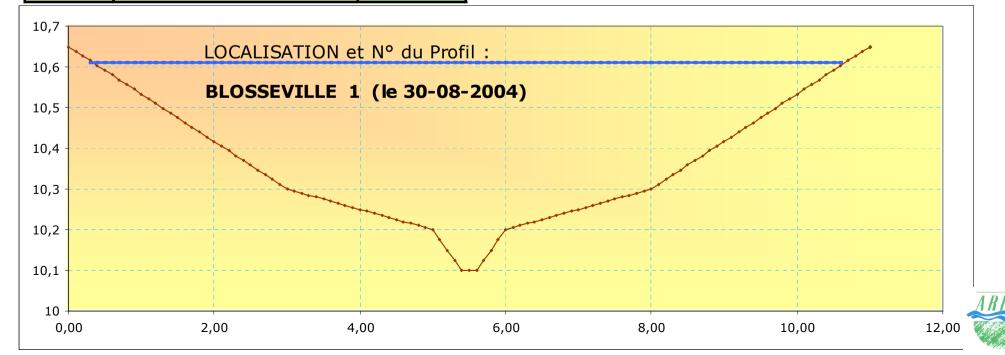
LOCALISATION et N° du Profil :

- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00.
- 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q


BLOSSEVILLE 1 (le 30-08-2004)

100 estimé.

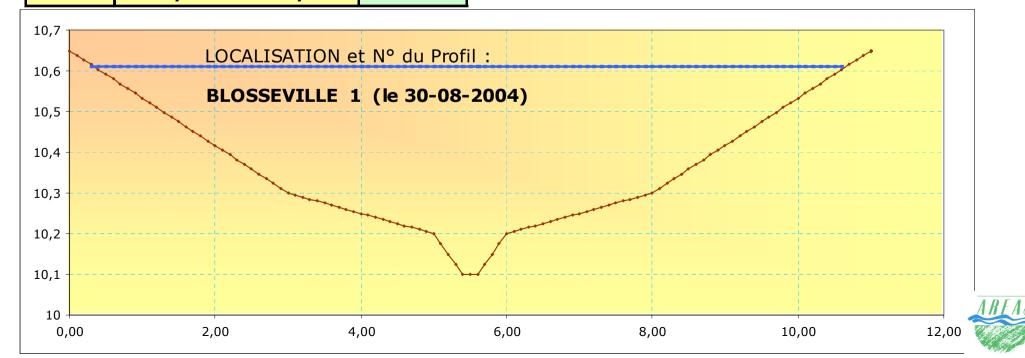
- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00. 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.


profil du terrain				
N°	Distance	Côte	Strickler	
1	0,00	10,65	15	
2	3,00	10,30	15	
3	5,00	10,20	15	
4	5,40	10,10	15	
5	5,60	10,10	15	
6	6,00	10,20	15	
7	8,00	10,30	15	
8	11,00	10,65	15	

- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00. 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.

profil du terrain				
N°	Distance	Côte	Strickler	
1	0,00	10,65	15	
2	3,00	10,30	15	
3	5,00	10,20	15	
4	5,40	10,10	15	
5	5,60	10,10	15	
6	6,00	10,20	15	
7	8,00	10,30	15	
8	11,00	10,65	15	

LOCALISATION et N° du Profil :	L(CALISA	TION 6	et N°	du	Profil	:
--------------------------------	----	--------	--------	-------	----	--------	---


BLOSSEVILLE 1 (le 30-08-2004)

- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00. 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.

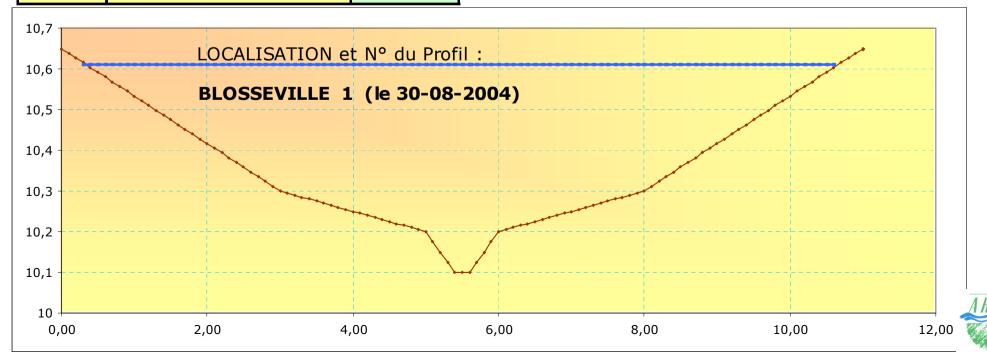
profil du terrain				
N°	Distance	Côte	Strickler	
1	0,00	10,65	15	
2	3,00	10,30	15	
3	5,00	10,20	15	
4	5,40	10,10	15	
5	5,60	10,10	15	
6	6,00	10,20	15	
7	8,00	10,30	15	
8	11,00	10,65	15	

estine.		/
Surface du BV	1,00	(Km2)
surfaces ruissellantes	67%	

Côte fil d'eau	10,610 (m)
Ks	15
Pente locale	0,62%
Pas de calcul	0,10 (m)

- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00.
- 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.

profil du terrain				
N°	Distance	Côte	Strickler	
1	0,00	10,65	15	
2	3,00	10,30	15	
3	5,00	10,20	15	
4	5,40	10,10	15	
5	5,60	10,10	15	
6	6,00	10,20	15	
7	8,00	10,30	15	
8	11,00	10,65	15	


o estime.			_/
Surface du BV	1,00	(Km2)	
surfaces ruissellantes	67%		\mathcal{N}
Côte fil d'eau	10,610	(m)	
Ks	15		
Pente locale	0,62%		
Pas de calcul	0,10	(m)	
			_

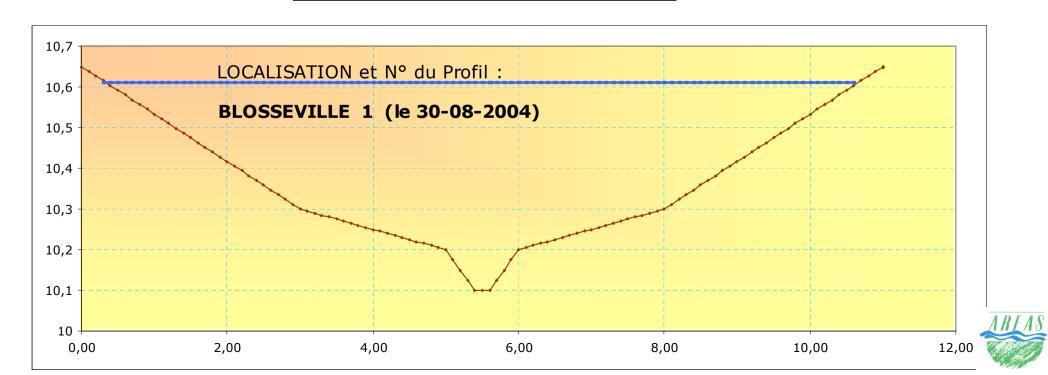
Hauteur d'eau

Larg. Écoulement

0,510 (m)

10,31 (m)

LOCALISATION et N° du Profil :


BLOSSEVILLE 1 (le 30-08-2004)

- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00. 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.

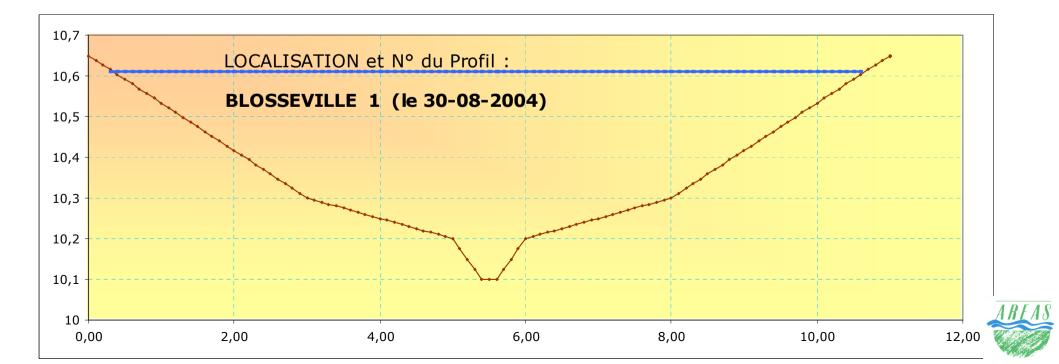
profil du terrain				
N°	Distance	Côte	Strickler	
1	0,00	10,65	15	
2	3,00	10,30	15	
3	5,00	10,20	15	
4	5,40	10,10	15	
5	5,60	10,10	15	
6	6,00	10,20	15	
7	8,00	10,30	15	
8	11,00	10,65	15	

	Surface du BV	1,00 (Km2)	Q10 estimé	0,670 (m ³ /s)
	surfaces ruissellantes	67%	Q100 estimé	1,340 (m ³ /s)
1				
	Côte fil d'eau	10,610 (m)		
	Ks	15		
	Pente locale	0,62%		
	Pas de calcul	0,10 (m)		

Hauteur d'eau	0,510 (m)	
Larg. Écoulement	10,31 (m)	

- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00. 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.

profil du terrain			
N°	Distance	Côte	Strickler
1	0,00	10,65	15
2	3,00	10,30	15
3	5,00	10,20	15
4	5,40	10,10	15
5	5,60	10,10	15
6	6,00	10,20	15
7	8,00	10,30	15
8	11,00	10,65	15


Surface du BV surfaces ruissellantes	1,00 (Km2) 67%
Côte fil d'eau	10,610 (m)
Ks	15
Pente locale	0,62%
Pas de calcul	0,10 (m)

Hauteur d'eau	0,510 (m)
Larg. Écoulement	10,31 (m)

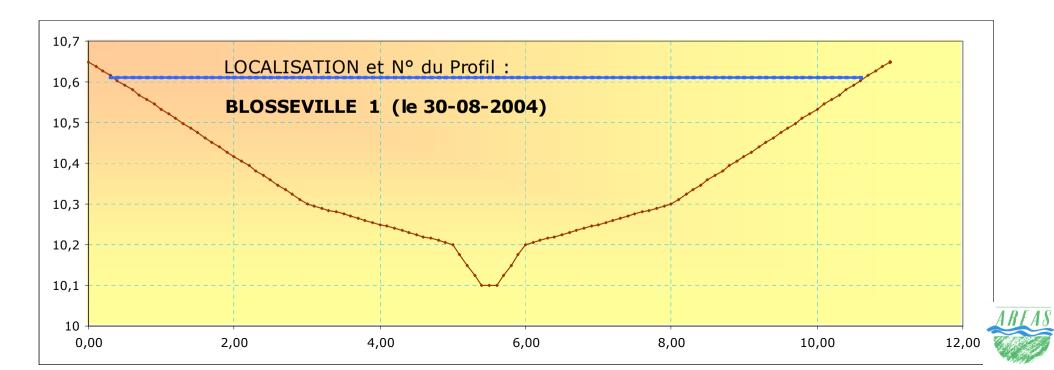
Q10 estimé	$0,670 \text{ (m}^3/\text{s)}$
Q100 estimé	1,340 (m ³ /s)
Surface mouillé	ée 2,73 (m²)
Périmètre mouil	llé 10,47 (m)
Rh	0,26 (m)
Vitesse locale	0,48 (m/s)
Rh * Vitesse L	0,13 (m ² /S)
Ks (Retardance	D) 18.8

Débit admissible

1,323 (m³/s)

LOCALISATION et N° du Profil :

BLOSSEVILLE 1 (le 30-08-2004)

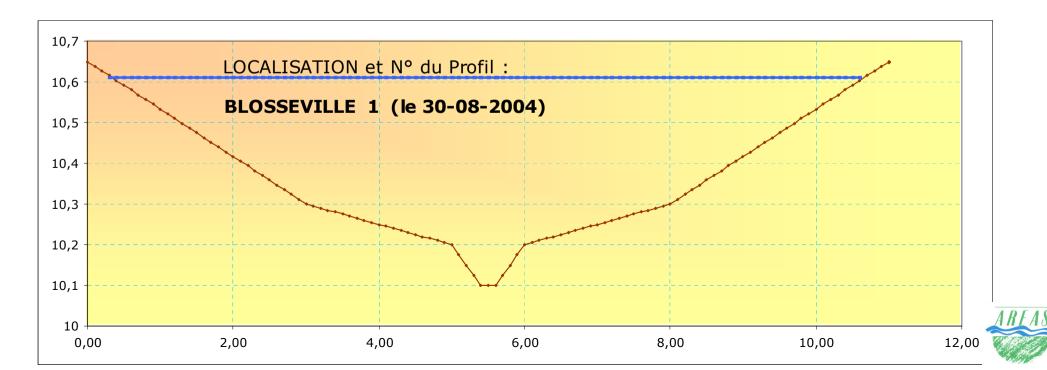

- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00. 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.

profil du terrain			
N°	Distance	Côte	Strickler
1	0,00	10,65	15
2	3,00	10,30	15
3	5,00	10,20	15
4	5,40	10,10	15
5	5,60	10,10	15
6	6,00	10,20	15
7	8,00	10,30	15
8	11,00	10,65	15

Surface du BV surfaces ruissellantes	1,00 (Km2) 67%
Côte fil d'eau	10,610 (m)
Ks	115
Pente locale Pas de calcul	0,62% 0,10 (m)

Hauteur d'eau	0,510 (m)
Larg. Écoulement	10,31 (m)

		4.
Q10 estimé	0,670 (m³/s)	
Q100 estimé	1,340 (m ³ /s)	
		M)
Surface mouillée	2,73 (m ²)	. \
Périmètre mouillé	10,47 (m)	
Rh	0,26 (m)	
Vitesse locale	0,48 (m/s)	
Rh * Vitesse L	0,13 (m ² /S)	
Ks (Retardance D)	18,8	
Débit admissible	1,323 (m ³ /s)	


- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00. 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.

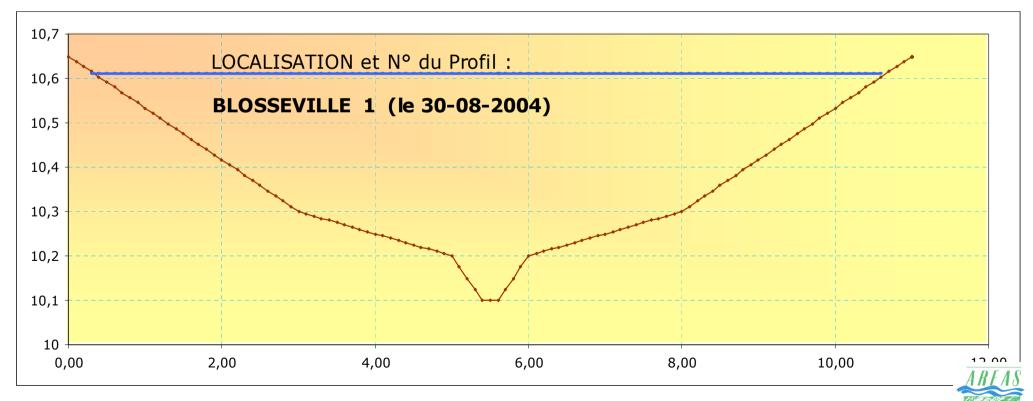
profil du terrain			
N°	Distance	Côte	Strickler
1	0,00	10,65	15
2	3,00	10,30	15
3	5,00	10,20	15
4	5,40	10,10	15
5	5,60	10,10	15
6	6,00	10,20	15
7	8,00	10,30	15
8	11,00	10,65	15

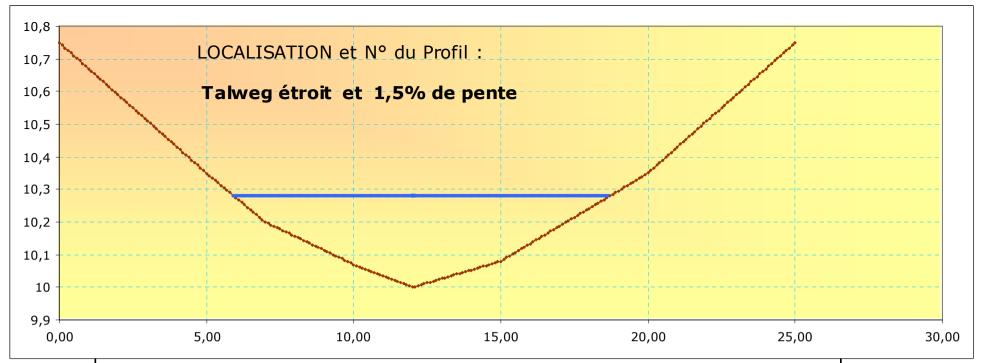
Surface du BV	1,00 (Km2)
surfaces ruissellantes	67%
Côte fil d'eau	10,610 (m)
Ks	15
Pente locale	0,62%
Pas de calcul	0,10 (m)
i us de calcul	0/10 (III)

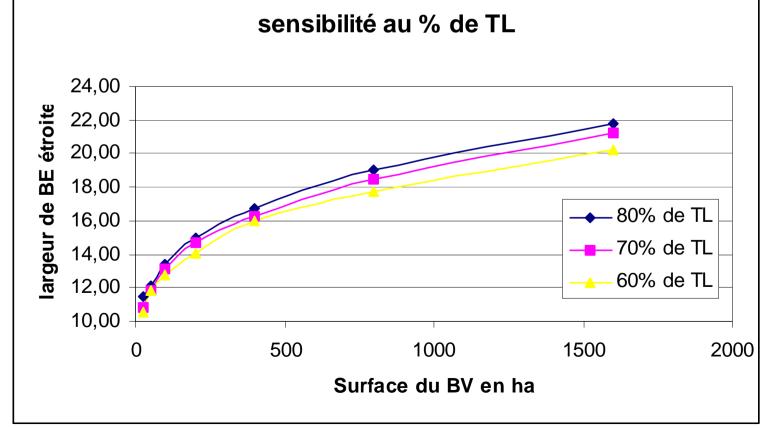
Hauteur d'eau	0,510 (m)
Larg. Écoulement	10,31 (m)

	A.
Q10 estimé	$0,670 \text{ (m}^3/\text{s)}$
Q100 estimé	1,340 (m ³ /s)
Surface mouillée	2,73 (m²)
Périmètre mouillé	10,47 (m)
Rh	0,26 (m)
Vitesse locale	0,48 (m/s)
Rh * Vitesse L	0,13 (m ² /S) ///
Ks (Retardance D)	18,8
Débit admissible	1,323 (m³/s)

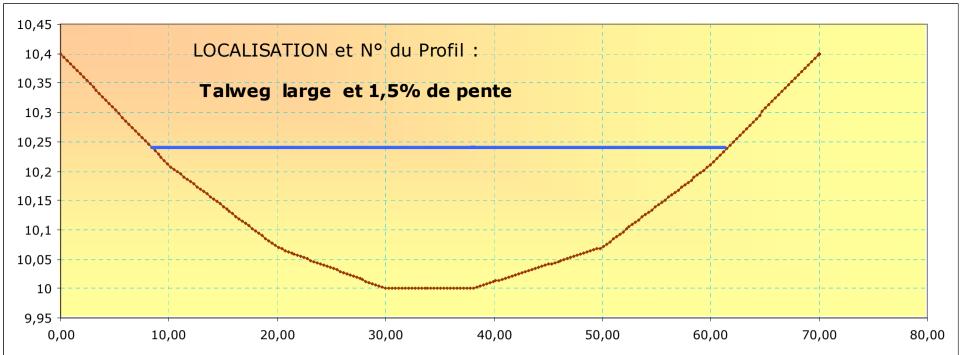
LOCALISATION et N° du Profil :

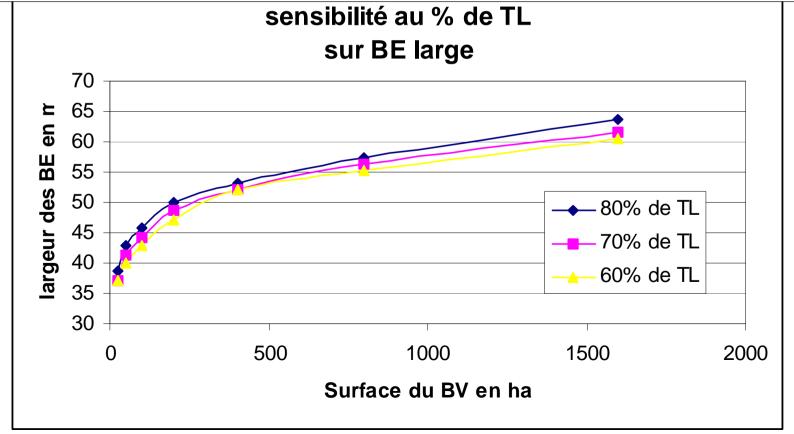

BLOSSEVILLE 1 (le 30-08-2004)


- 1-Entrer les données sur fond jaune. La côte minimale doit être 10,00.
- 2-Faire varier la côte fil d'eau jusqu'à ce que le Débit admissible égale Q100 estimé.


profil du terrain						
N°	Distance	Côte Stricklei				
1	0,00	10,65	15			
2	3,00	10,30	15			
3	5,00	10,20	15			
4	5,40	10,10	15			
5	5,60	10,10	15			
6	6,00	10,20	15			
7	8,00	10,30	15			
8	11,00	10,65	15			

1,00 (Km2)
67%
10,610 (m)
15
0,62%
0,10 (m)
0,510 (m)
10,31 (m)


			_ /
Q10 estimé	0,670	(m^3/s)	
Q100 estimé	1,340	(m^3/s)	
			. / //
Surface mouillée	2,73	(m ²)	
Périmètre mouillé	10,47	(m)	
Rh	0,26	(m)	
Vitesse locale	0,48	(m/s)	
Rh * Vitesse L	0,13	(m^2/S)	//
Ks (Retardance D)	18,8		
Débit admissible	1,323	(m³/s)	



Source figure : PPRI BV Austreberthe Methodo. pour le def. de

Cas des talwegs d'ordre 3 et +

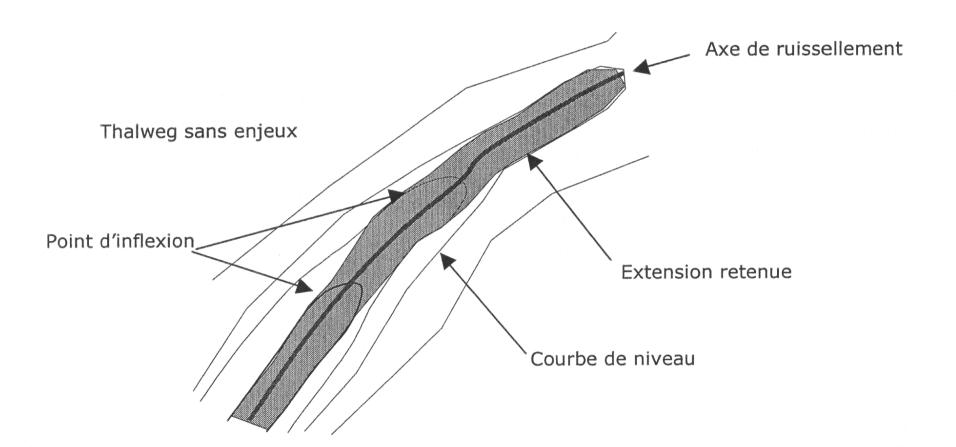


Figure 6: Exemple de détermination de l'enveloppe d'aléa pour les thalwegs d'ordre 4 et plus sans enjeu.

Exemple de plaine alluviale inondable

